Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mol Immunol ; 149: 107-118, 2022 09.
Article in English | MEDLINE | ID: covidwho-1907590

ABSTRACT

BACKGROUND: In this pre-clinical study, we designed a candidate vaccine based on severe acute respiratory syndrome-related -coronavirus 2 (SARS-CoV-2) antigens and evaluated its safety and immunogenicity. METHODS: SARS-CoV-2 recombinant protein antigens, including truncated spike protein (SS1, lacking the N-terminal domain of S1), receptor-binding domain (RBD), and nucleoprotein (N) were used. Immunization program was performed via injection of RBD, SS1 +RBD, and SS1 +N along with different adjuvants, Alum, AS03, and Montanide at doses of 0, 40, 80, and 120 µg at three-time points in mice, rabbits, and primates. The humoral and cellular immunity were analyzed by ELISA, VNT, splenocyte cytokine assay, and flow cytometry. RESULTS: The candidate vaccine produced strong IgG antibody titers at doses of 80 and 120 µg on days 35 and 42. Even though AS03 and Montanide produced high-titer antibodies compared to Alum adjuvant, these sera did not neutralize the virus. Strong virus neutralization was recorded during immunization with SS1 +RBD and RBD with Alum. AS03 and Montanide showed a strong humoral and cellular immunity; however, Alum showed mild to moderate cellular responses. Ultimately, no cytotoxicity and pathologic change were observed. CONCLUSION: These findings strongly suggest that RBD with Alum adjuvant is highly immunogenic as a potential vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antigens, Viral , COVID-19/prevention & control , Mice , Mineral Oil , Models, Animal , Nucleocapsid Proteins , Rabbits , Recombinant Proteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
Hum Vaccin Immunother ; 17(1): 92-97, 2021 01 02.
Article in English | MEDLINE | ID: covidwho-1066191

ABSTRACT

The third outbreak of coronavirus (CoV) infection (after SARS-CoV and MERS-CoV) caused by a novel CoV (SARS-CoV-2) of the genus Beta-coronavirus has become a global pandemic. CoVs are enveloped viruses whose proteins include spike (S), membrane (M), and envelope (E) which are embedded in the viral envelope. The glycosylated S protein, which forms homo-trimeric spikes on the surface of the viral particle, mediates viral entry into host cells. SARS-CoV-2, like SARS-CoV, uses the Angiotensin-Converting Enzyme 2 (ACE2) cell surface protein for cellular entry. An attractive anti-viral approach is targeting virus entry into cells, for which three strategies are suggested: 1) direct targeting of the viral glycoprotein; 2) targeting the viral receptor on the cell surface; and 3) using soluble (s) ACE2 that binds to S protein thereby neutralizing the virus. In this article, the advantages and disadvantages of these strategies are explained. Moreover, we propose that fusion of the sACE2 to anti-CD16 to produce a bi-specific molecule could be a promising anti-viral strategy.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , COVID-19/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Neutralizing/metabolism , COVID-19/metabolism , Coronavirus Infections/metabolism , Humans , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL